If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10k^2-15k=0
a = 10; b = -15; c = 0;
Δ = b2-4ac
Δ = -152-4·10·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-15}{2*10}=\frac{0}{20} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+15}{2*10}=\frac{30}{20} =1+1/2 $
| 0.75x-1.5=0.3 | | 5+|m|=1 | | (10x+8)=(5x-4) | | -5(x-5)+4x+4=25 | | x=0.6x=384 | | 1.01^x=50 | | 0•18(5-4)=0•5x+0•8 | | k+8/3=(-2) | | X-7y-11=0 | | 6.75+3/8x=13(0.25) | | 6.75+3/8x=13(1/4) | | 1/4x=3*2/3 | | 1/4x=32/3 | | 6n-9n+10n=252 | | 2.5x+9=3x | | -497a+50=-160 | | 1.8(18)+32=f | | 0.25(16n-6)=0.5(2n+3) | | 1/4=x/64 | | 3x+4/1=-27x/5 | | 10a-2=18 | | 2x+x=180-3x | | 3x+4x+5;x=9 | | (2x^2)/(x^2+2)^-2=0 | | 35=4m+7 | | -4(x+5)=5 | | y/5=13/17 | | Y3=x2 | | 960=(8+2w)(w) | | Z5=x3 | | Y8=z3 | | 6.75+3/8x=13*1/4 |